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a b s t r a c t

Understanding surface water quality is a critical step towards protecting human health and

ecological stability. Because of resource deficiencies and the large number of river miles

needing assessment, there is a need for a methodology that can accurately depict river

water quality where data do not exist. The objective of this research is to implement

a methodology that incorporates a river metric into the space/time analysis of dissolved

oxygen data for two impaired river basins. An efficient algorithm is developed to calculate

river distances within the BMElib statistical package for space/time geostatistics. We find

that using a river distance in a space/time context leads to an appreciable 10% reduction in

the overall estimation error, and results in maps of DO that are more realistic than those

obtained using a Euclidean distance. As a result river distance is used in the subsequent

non-attainment assessment of DO for two impaired river basins in New Jersey.
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1. Introduction

The identification of impaired river segments is a significant

requirement of the federally implemented Clean Water Act

(CWA) of 1972. The CWA requires states to assess water

quality and identify and report those segments that are

impaired for particular uses. Dissolved oxygen (DO) content is

one of the easiest and most basic water quality parameters to

measure and is a good indicator of overall stream health.

Because of resource deficiencies, budget constraints, and the

sheer number of river miles to be assessed, there is a need for

cost efficient and effective methods that can estimate DO for

a large number of river miles using limited monitoring data.
One way to do this is with geostatistically based methods

that use the principle of correlation among like data points to

derive values where data do not exist. There have been several

studies that characterize surface water quality using geo-

statistics. These studies involve linear kriging methods, or

regression based models based on the spatial variability in the

data (Rasmussen et al., 2005; Tortorelli and Pickup, 2006). They

also use a Euclidean, or ‘across land’ metric to calculate

distances between data points.

Recent developments in geostatistics have moved beyond

the purely spatial domain to include temporal variability as

well (Stein, 1986; Christakos, 1992; Cressie, 1993; Bogaert, 1996;

Kyriakidis and Journel, 1999; Fuentes, 2004; Kolovos et al.,
* Corresponding author. Tel.: þ1 919 966 7014; fax: þ1 919 966 7911.
E-mail addresses: emoney@email.unc.edu (E. Money), gail.carter@dep.state.nj.us (G.P. Carter), marc_serre@unc.edu (M.L. Serre).

0043-1354/$ – see front matter ª 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.watres.2009.01.034

mailto:emoney@email.unc.edu
mailto:gail.carter@dep.state.nj.us
mailto:marc_serre@unc.edu
http://www.elsevier.com/locate/watres


w a t e r r e s e a r c h 4 3 ( 2 0 0 9 ) 1 9 4 8 – 1 9 5 8 1949
2004; Akita et al., 2007). Akita et al. (2007) use spatiotemporal

methods to assess tetrachloroethene (PCE) in the rivers of New

Jersey, and claims a 56% improvement in estimation accuracy

when comparing a space/time to a purely spatial approach.

This is a substantial improvement and is most likely due to

the irregularity of the spatial and temporal sampling of PCE.

DO data in New Jersey are characterized by the same irregular

space/time sampling; therefore a spatiotemporal framework

will be used in this work.

The framework implemented in this research is the

spatiotemporal Bayesian Maximum Entropy (BME) method

(Christakos, 1990, 2000; Serre et al., 1998; Serre and Christakos,

1999). This method has been successfully applied to a variety

of environmental issues, including air quality (Christakos

et al., 2004; Wilson and Serre, 2007), and epidemiology (Law

et al., 2004, 2006), as well as water quality (Serre et al., 2004;

Akita et al., 2007). As demonstrated in these studies, BME

presents the flexibility of providing the space/time kriging

method as its linear limiting case, as needed for this work on

DO, while it can be expanded to a non-linear estimator if other

non-linear knowledge bases (e.g. soft data, non Gaussian

distribution, etc.) need to be considered.

There have been several recent studies regarding the use of

non-Euclidean distances and stream flow in water quality

estimation, and the development of corresponding permissible

covariance models (Ver Hoef et al., 2006; Cressie et al., 2006;

Peterson and Urquhart, 2006; Curriero, 2006; Bailly et al., 2006;

Bernard-Michel and de Fouquet, 2006; Peterson et al., 2007). Ver

Hoef et al., (2006), Cressie et al. (2006), and Peterson et al. (2006)

demonstrate the use of flow-weighted covariance models

using nitrates, change in DO, and dissolved organic carbon

(DOC), respectively.

A summary of the most recent studies that compare

Euclidean and river covariance models is presented in Table 1.

Cressie et al. (2006) and Peterson and Urquhart (2006)

compared Euclidean and flow-weighted covariance models,

and found that the Euclidean model performed better. Ver

Hoef et al. (2006) is the only study that found a flow-weighted

covariance model is more accurate, though they compare that

model with an isotropic covariance model using a river metric

instead of a Euclidean metric.

The methods proposed in this work are based on geo-

statistical principles and spatial autocorrelation between data

points. They are not meant to take the place of mechanistic

and process-based models such as the traditional Streeter–

Phelps or the Qual2 models developed by EPA. Geostatistical

models can complement these existing methods by taking the
outputs of these models and using them as inputs into a geo-

statistical framework to create larger spatial and temporal

coverages of the parameter of interest, possibly leading to

more accurate maps (LoBuglio et al., 2007). Alternatively,

geostatistical models can also complement mechanistic

models by providing evaluation data reconstructed over

a basin. This study attempts to look at only geostatistical

models in order to gain an understanding of the influences

that distance measures have on our ability to assess rivers for

DO impairments. Future work will examine the use of these

models in combination with other mechanistic modeling

approaches.

While the majority of studies have focused on purely

spatial estimation methods, this research will examine the

use of a river metric in a composite space/time analysis. Since

very few studies have used a river metric to examine DO in

a spatial context, and even fewer have done such analysis in

a space/time context, the two objectives of this study are (1) to

determine whether the use of a river metric provides a better

model for estimation of DO along a river network in a space/

time context, and (2) to apply the most appropriate space/time

model to estimate DO non-attainment for two impaired river

basins.

2. Materials and methods

2.1. Study area

The two study watersheds are shown in Fig. 1 together with

arithmetic averages of measured DO over the study time

period. Both areas are high priority basins for the state and

have impairments related to nutrients, sediments, micro-

organisms, and DO. The state of New Jersey is divided into 20

watershed management areas (WMAs). The Raritan consists

of three WMAs, the North and South Branch, Millstone, and

Lower Raritan. The land uses in both basins are primarily

urban or agricultural. Overall, the Raritan is 36% urban, 19%

agriculture, with the remaining divided between forest,

wetland, and water. The Lower Delaware is 46% urban and

21% agricultural. These classifications are based on the 1995/

97 Land Use/Land Cover designations by the State of New

Jersey. New Jersey has a moderate climate with cold winters

and warm, humid summers. These fluctuations in tempera-

ture play an important role in determining the amount of

available DO found in these basins. Additionally, both the

Lower Delaware and Raritan basins are geologically structured
Table 1 – Water quality estimation studies using river covariance models.

Study Water quality
parameter

Comparison % Change in MSEa Model used in estimation

Cressie et al.(2006) Change in DO Euclidean vs. flow-weighted Not reported Euclidean

Peterson and Urquhart (2006) DOC Euclidean vs. flow-weighted Exponential cov.: þ31.3% Euclidean

Spherical cov: �9.0%

Mariah cov.: þ32.4%

Ver Hoef et al. (2006) Sulfate Isotropic river vs. flow-weighted Exponential cov. with

constant mean: �5.5%

Flow-weighted

a % Change in Mean Square Error (MSE). A negative value means that using a flow-weighted covariance model reduces prediction error.
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such that highlands situated to the west (Raritan) and east

(Lower Delaware) feed into flat, highly developed areas near

the basin outlets, where impervious surfaces exceed 50% in

many places (NJDEP, 2002). Urban development taking place in

both of these basins over the last two decades coupled with

relatively little change in agricultural uses produces a wide

array of point and non-point sources in both regions. This

leads to increased nutrient levels from wastewater discharge,

urban runoff, and agricultural runoff, and the potential for

higher biological oxygen demand (BOD) and reduced DO

levels. According to the 2006 integrated water quality report,

only 5% of statewide impairments were due to dissolved

oxygen, however, greater than 30% of river miles went un-

assessed due to insufficient data (NJDEP, 2006b). This is where

methods such as the one employed in this study become

increasingly important.

2.2. Dissolved oxygen data

DO data were obtained from two sources for the period

beginning January 1, 1990 through August 1, 2005. The first

source is the U.S. Geological Survey (USGS) National Water

Information System (NWIS). The second source is the USEPA

storage and retrieval (STORET) database. Often times these

databases report values with clarifying symbols accompa-

nying them to signify uncertainty in the measurement.

Therefore, in order to use these values in the analysis, any

value reported as ‘less than’ a particular value (i.e. containing

Fig. 1 – DO monitoring stations with at least one

measurement between 1/1/1990 and 8/1/2005.
a ‘<’ in the database) was treated as equal to 50% of that value,

and values reported as estimated (i.e. containing an ‘E’ in the

database) were treated as actual values. A summary of the

data is given in Table 2.

2.3. Isotropic river covariance models

Consider the case of a river network that can be represented

by a directed tree of river reaches with zero width. This

representation is highly adequate for downstream combining

stream networks with somewhat narrow reaches; however it

is not highly adequate for wider water bodies such as con-

nected estuaries or lakes (Curriero, 2006). The river network is

made up of reaches connected at confluence nodes. Each river

reach is identified by a unique index i (Fig. 2), and let V be the

set of all river reach indexes; V ¼ {1, 2, ., n}, where n is the

total number of individual reaches. An i ¼ 1 will denote by

convention the downstream-most river reach. The down-

stream end of the downstream-most reach is the outlet of the

river network. The longitudinal coordinate l of a point on the

river network is defined as the length of the continuous line

connecting the outlet to that point along the river network (by

convention, negative l values represent fictitious locations

downstream of the outlet). A point r ¼ (s,l,i) on the river

network is uniquely identified by either its spatial coordinate

s; or its river coordinate (l,i) identifying the longitudinal

coordinate l and the reach index i where the point is located

(see Fig. 2).

A non-negative real-valued function d(r,r0) is a metric if it

verifies the following three properties

dðr; r 0Þ ¼ 0 if and only if r ¼ r 0; (1)

dðr; r 0Þ ¼ dðr 0; rÞ;

and

dðr; r 0Þ � dðr; r 00Þ þ dðr 00; r 0Þ

for all r, r 0, r 00. We denote dE(r,r 0) and dR(r,r 0) as the Euclidean

and river distances, corresponding to the shortest distance

across land and along the river network, respectively. It can be

easily shown that both the Euclidean and river distances

verify the properties of a metric.

We let X(r) be a random field representing the value taken

by a water quality parameter X at location r. The covariance

between X(r) and X(r 0) is a real-valued function of r and r 0 that

Table 2 – Basic statistics for monitored DO data (raw-mg/
L) for the period January 1990–August 2005 for the Raritan
and Lower Delaware River Basins in New Jersey.

Parameter Raritan Basin Lower Delaware Basin

# Of space/time data

points

1755 1855

# Of Monitoring

Stations

65 47

Mean (mg/L) 10.471 7.859

Variance (mg/L) 7.061 5.359

Skewness coefficient �0.006 0.306

Kurtosis coefficient 2.462 2.437
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Fig. 2 – (Left) Directed tree river network with 5 stream reaches (numbered in circles), and showing point (l,i) on reach 4, and

point (l0,i0) on reach 3. (Right) Range of the exponential-power river covariance parameters (a,b) for which the covariance

matrix constructed using 20 neighboring points in the Raritan river in New Jersey has a positive lowest eigenvalue, i.e.

min(l)>0.
we denote as cov(r,r 0). By isotropic river covariance models we

refer to the class of permissible models that can be expressed

as a function of the distance between the points r and r 0, i.e.

cov(r,r 0) ¼ c(d(r,r 0)). It is well known (Christakos, 1992; Cressie,

1993; Stein, 1999) that permissible covariance functions must

verify the positive definiteness condition, which for isotropic

river covariance models can be expressed as

Xn

k¼1

Xn

k0¼1

qkqk0cðdðrkrk0 ÞÞ � 0 (2)

for all choices of n river points rk and real numbers qk, k¼ 1, .,

n (the above condition comes from the fact that

varð
Pn

k¼1 qkXðrkÞÞ ¼
Pn

k¼1

Pn
k0¼1 qkqk0covðrkrk0 Þ � 0). Some

covariance functions are known to be permissible when using

the Euclidean distance, such as the following exponential-

power model (Stein, 1999; Curriero, 2006)

covðr; r 0Þ ¼ exp
�
� ðdEðr; r 0Þ=arÞb

�
; 0< b � 2 (3)

where ar is the covariance range. This model corresponds to

the usual exponential and Gaussian models when b ¼ 1 and

b ¼ 2, respectively. Other models (spherical, etc.) are also

permissible using the Euclidean metric. However, as demon-

strated in Curriero (2006), permissibility of a covariance

function with the Euclidean distance does not ensure

permissibility with other distances, even if such distances

verify the properties of a metric, therefore caution should be

used when using covariance functions with the river distance.

Ver Hoef et al. (2006) propose an appealing method to

construct permissible covariance functions for river networks.

Using their approach, we define the random variable X(l,i) at

longitudinal coordinate l along reach i as the moving average

of a white noise random process W(u,j ) defined at longitudinal

coordinate u < l along reach j downstream of reach i. Let Vi(u)

be the set of reaches at longitudinal coordinate u that are flow-

connected to reach i. By convention, if u ¼ þN we let Vi(u) be

the set of leaf reaches upstream of reach i, and if u¼�N we let

Vi(u) be the outlet reach. Note that if u > l where l is the

longitudinal coordinate of a point on reach i, then Vi(u) may

contain more than one reach index. However, if u < l, then

Vi(u) ¼ {j} is a singleton containing the index of the unique

reach at longitudinal coordinate u downstream of i. Using this

notation X(l,i) can be written as
Xðl; iÞ ¼
Z l

�N

du gðu� lÞWðu;ViðuÞÞ (4)

where g(u � l ) is a moving average function defined on R1. As

indicated in Ver Hoef et al. (2006), by choosing a moving

average function that is exponentially decaying away from 0,

i.e. gðhÞ ¼
ffiffiffi
2
p

expð�jhjÞ, the moving average construction leads

to a valid covariance function of exponential type that is

a function of the river distance, i.e.

covðr; r0Þ ¼ expð � dRðr; r0ÞÞ (5)

An overview of how to obtain this result has already been

provided by Ver Hoef et al. (2006) and therefore we only

provide the detailed proof of this result in the supplementary

material for this paper. We note that while the exponential-

power model is valid for 0 <b � 2 for the Euclidean distance,

that model has only been shown to be valid for the river

distance when b ¼ 1.

The most appropriate distance for a given water quality

parameter may be a combination of the Euclidean and river

distances. We may therefore define a composite Euclidean–

river distance as

daðr; r0Þ ¼ adRðr; r 0Þ þ ða� 1ÞdEðr; r 0Þ; 0 � a � 1 (6)

which can easily be shown to verify the properties of a metric.

Using da(r,r0), we then propose the following isotropic expo-

nential-power river covariance model

covðr; r0Þ ¼ exp
�
� ðdaðr; r 0Þ=arÞb

�
; 0 � a � 1 and 0< b � 2 (7)

which to the best of our knowledge, has not been proposed in

this form in earlier works. This covariance model is permis-

sible for any directed tree river network for ða ¼ 0; b˛½0; 2�Þ and

(a¼ 1, b¼ 1). Additionally, for a particular river of interest, this

covariance model may be valid for other values of a˛½0;1� and

b˛½0;2�, which can be verified numerically by checking that

the lowest eigenvalue l of any covariance matrix used in the

estimation of water quality is non-negative. Fig. 2 depicts the

range of (a,b) values for which the lowest eigenvalue is posi-

tive, i.e. min(l) > 0, for 20 points randomly selected in the

Raritan River in New Jersey. As can be seen from this figure,

there is a large range of permissible (a,b) values for this

particular river and selected points.
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Hence a composite Euclidean–river distance has been

developed that can be used for a variety of water quality

parameters. Using an isotropic exponential-power river

covariance model, it is shown that this model is permissible

for any directed tree river network for ða ¼ 0; b˛½0;2�Þ and

(a ¼ 1, b ¼ 1), and provides a river-specific numerical test to

check whether the model is permissible using other choices of

a˛½0;1� and b˛½0;2�.

2.4. Flow-weighted covariance models

Another important class of permissible covariance models for

directed tree river networks are covariance functions that use

flow and river distance (Ver Hoef et al., 2006; Cressie et al.,

2006; Peterson et al., 2006, 2007; Bernard-Michel and de Fou-

quet, 2006, see supplemental materials for mathematical

details of their work using a unified mathematical notation),

which we refer to as flow-weighted covariance models, and

which can be written as

covðr; r0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U
�
i; i0
�q
c1ðdRðr; r0ÞÞ (8)

where the real-valued function c1(.) can be any permissible

covariance function in R1 (e.g. such that it is the Fourier

transform of a non-negative bounded function in R1, Chris-

takos, 1992), and U(i,i0) is a real number between 0 and 1

expressing the amount of flow connection between reach i

and i0 such that U(i,i0) ¼ 0 if they are not flow-connected,

U(i,i0) ¼ 1 if they are on the same reach, and
P

i0˛VlðuÞUði; i0Þ ¼ 1

for u> l. The above flow-connected covariance model was first

derived by Ver Hoef et al. (2006). Cressie et al. (2006) subse-

quently proposed that the flow connection between reach i

and an upstream reach i0 can be defined as U(i,i0) ¼ U(i0)/U(i)

where U(i) is a function that increases in the direction of flow.

In that case, the property
P

i0˛VlðuÞUði; i0Þ ¼ 1cu > l is verified if

and only if U(i) is a flow additive function, i.e. such that if two

reaches i0 and i0 combine into reach i, then U(i0)þU(i00)¼U(i). As

shown in the supplementary material various additive func-

tions can be used to obtain U(i), including flow discharges if

these are available, watershed areas (Ver Hoef et al., 2006;

Peterson and Urquhart, 2006; Peterson et al., 2007; Bernard-

Michel and de Fouquet, 2006), or simply an additive stream-

order number (Cressie et al., 2006).

Flow-weighted covariance models do not belong to the

class of isotropic river covariance models because the flow

connection term cannot be reduced to a function of the

distance between points. Their obvious advantage is that they

incorporate flow-connectivity in the model of autocorrelation.

However, as noted by Peterson and Urquhart (2006), setting

the covariance to zero when points are not flow-connected

may be a hindrance if very few monitoring sites are flow-

connected, because in that case the number of data points in

the estimation neighborhood is drastically reduced, leading to

less informed estimation maps than those produced using an

isotropic river covariance model. Unfortunately there are very

few monitoring points that are flow-connected on any given

sampling day in our DO data set. Hence flow-connected

covariance models could not be used in this work. However,

these models should be used when a large fraction of the

monitoring samples are flow-connected. Recent exciting work
by Bailly et al. (2006) may allow us to extend the class of flow-

connected covariance models to include models allowing

some autocorrelation between points that are not flow-con-

nected (with conditional independence to common down-

stream points).

2.5. Space/time covariance modeling

This analysis uses a space/time random field (S/TRF) X(p), where

p¼ (r,t) is a space/time point, r is the spatial river coordinate and

t is time. The covariance cx(p,p0) of X(p) is said to be spatially

isotropic/temporally homogeneous if it can be expressed in

terms of the spatial distance r ¼ d(r,r0) and the time difference

s ¼ jt � t0j. Experimental values of the covariance for a spatial

distance r and temporal lag s are obtained using a covariance

statistical estimator on pairs of X measurements approximately

separated by the spatial distance r, and temporal lag s.

The parameters of a covariance model are then adjusted until

a best fit is found between the model and experimental

covariance values. The covariance model used in this analysis is

given by

cðr; sÞ ¼ c1dðrÞdðsÞ þ c2 exp

�
�3r
ar2

�
exp

�
�3s
at2

�

þ c3 exp

�
�3r
ar3

�
cos

�
2ps
at3

�
þ c4 exp

�
�3r
ar4

�
exp

�
�3s
at4

�
ð9Þ

where r is chosen to be either the Euclidean or river distance

and d is the nugget coefficient in space or time. This model

consists of 4 structures where c1, ., c4 are calculated portions

of the total variance and correspond to the coefficients of each

structure (i.e. c1 for structure 1, c2 for structure 2.). The first

term of each structure is the spatial component, while the

second term relates to the temporal component of the

covariance. The variables ar and at are the spatial and

temporal ranges for each structure. Other than the initial

nugget, the spatial component of the remaining structures is

exponential, which as shown above is permissible for any

directed tree river network for the Euclidean and river

distances, and therefore the overall model is permissible

because it corresponds to nested space/time separable

permissible covariance functions (Kolovos et al., 2004). The

temporal component is exponential for structures 2 and 4,

while structure 3 is a cosinusoidal function related to the

seasonal fluctuations often associated with DO. Further

covariance details are found in section 3.1.

2.6. The BME framework and estimation of DO

The BME method was used to estimate DO at unsampled river

locations. BME provides a rigorous mathematical framework

to process a wide variety of knowledge bases characterizing

the space/time distribution and monitoring data available for

DO, and obtain a complete stochastic description of DO at any

unmonitored space/time point in terms of its posterior Prob-

ability Distribution Function (PDF). The BME method was

introduced by Christakos (1990), and a detailed description of

the conceptual underpinnings of the BME framework is

provided in Christakos (1992, 2000), while its BMElib numerical

implementation is described in Serre et al. (1998), Serre and

Christakos (1999) and Christakos et al. (2002).
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BMElib version 2.0b was used in this analysis. It was

written using the MATLAB R2000a programming platform.

BMElib 2.0b does not have functions to calculate river

distances. We therefore added new MATLAB functions to

BMElib 2.0b that efficiently calculate river distances.

Details about the implementation of river distance calcu-

lations in BMElib are provided in the supplemental mate-

rials for this paper.

The distribution of DO across space and time is modeled as

the sum of a non-random function mDO(p) and an isotropic/

stationary residual S/TRF X(p). The spatial and temporal

components of mDO(p) were obtained by exponential

smoothing of the time-averaged and spatially-averaged data,

respectively. The non-random function mDO(p) describes the

modeled spatial and temporal trends of DO, while the S/TRF

X(p) captures the residual space/time variability and

uncertainties.

The site specific knowledge includes both hard data (e.g.

measured value) and soft data (i.e. data associated with

measurement error). By way of summary, BME uses the

maximization of a Shannon measure of information entropy

and an operational Bayesian updating rule to process the

general and site specific knowledge bases, and obtain the

posterior PDF describing the DO concentration at any

unsampled point of the river network (Christakos et al., 2002).

This research uses the special case where only hard data

are considered (i.e. the measurement errors are small or

unidentified). In this case the BME method yields the estima-

tors of linear geostatistics known as the simple, ordinary and

universal kriging methods. This research, therefore, is based

on a form of space/time linear kriging. The BMElib package

(BMElib, 2008) implements concepts of composite space/time

analysis (i.e. composite space/time metrics and neighborhood

search, non separable space/time covariance models, etc.)

that result in better geostatistical functions for linear space/

time kriging than that provided by classical geostatistics

software where time is included as merely another spatial

dimension.

In order to determine which of the Euclidean or river

metrics was more accurate for the assessment of DO in the

study basins, a cross-validation procedure was used. Each

data point was removed sequentially and re-estimated using

the remaining space/time data points. The Mean Square Error

(MSE) is calculated as the sum of the squared differences

between re-estimated and measured values. The method with

the lowest MSE is then used in the assessment of DO along

unmonitored rivers.

Using the selected distance metric within the BME frame-

work we estimate DO at equidistant estimation points (i.e.

distributed at a fixed interval of 0.1 miles) along the Raritan

and Lower Delaware River networks. Monitoring data are

treated as hard data because all measurements met the USGS

or EPA data quality standards. For each estimation point the

hard data situated in its local space/time neighborhood are

selected, and the corresponding BME posterior PDF is calcu-

lated to describe DO at that estimation point. The BME

posterior PDF obtained at equidistant points along the river

network is then used to obtain estimated DO values, which are

used to produce maps of DO concentration, and delineate

river miles that may be impaired.
2.7. Assessment of impaired river miles

In order to better understand the seasonal pattern of DO

impairment and better quantify the probability of these

impairments, a criterion-based space/time assessment

framework is employed to categorize the fraction of river

miles meeting certain probability thresholds, as discussed in

Akita et al. (2007). These thresholds give us the ability to

classify the probability of violation of a standard for any

space/time estimation point based on its BME posterior PDF.

The standard for DO concentration was set at 7 mg/L, which is

the standard used by NJDEP for FW-TP streams (NJDEP, 2006a).

Using this standard, the probability of violation at space/time

point p is then defined as the probability that the BME mean

estimate is <7 mg/L, i.e.

Prob½Violation;p� ¼ Prob½DOðpÞ < 7:0 mg=L� (10)

The fraction of river miles impaired during any given time

period is calculated using the fraction of equidistant estima-

tion points for which the probability of violation is in excess of

some pre-selected probability threshold.

3. Results & discussion

3.1. Covariance of DO in New Jersey

Fig. 3 shows the experimental covariance values (squares)

obtained using the mean-trend removed DO data for the

Raritan and Lower Delaware River Basins. These estimates

were then used to fit the non separable space/time covariance

model (Eq. (9)). The sills c1, ., c4, spatial ranges ar2, ar3, ar4, and

temporal ranges at2, at3, at4 obtained are listed in Table 3, and

the resulting model is shown as a solid line in Fig. 3.

Fig. 3 – Space/time covariance of mean-trend removed DO

in New Jersey’s Raritan and Lower Delaware River Basins

shown as a function of distance r along the river network

for a temporal lag of s [ 0 (top plot) and as a function of s

for r [ 0 (bottom plot) with squares representing

experimental covariance values and plain lines

representing the covariance model.
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The variance of the first structure of the covariance model,

or the nugget effect, is about 25% of the overall variance. The

nugget effect typically consists of the variance due to inherent

variability of DO over very short distances plus the measure-

ment-error variance. In our case, we assessed that for our data

set, the measurement-error variance for DO contributes at

most 20% of the total variation in the data, which is within the

upper bound indicated by the nugget effect. The second

structure of the covariance model contains a short range

exponential spatial component and a short range exponential

temporal component. Fluctuations of DO over this combina-

tion of short spatial ranges (5 km) and short temporal ranges

(25 days) may be due to local sources of pollution acting over

short spatial distances (such as point pollution discharges

leading to local increase of BOD and subsequent reductions in

DO over short distances) that either have intermittent pollu-

tion discharge loading lasting just a few days, or are persistent

but have an effect that is altered intermittently by meteo-

rology events lasting from a few days to a month (e.g. rainfall

events, or changes in temperature which significantly effects

the oxygen saturation of water). This accounts for nearly 50%

of the overall variation. The third structure of the covariance

also contains a very short range exponential spatial compo-

nent but coupled with a medium range cosinusoidal hole

temporal component with a periodicity corresponding exactly

to a calendar year. This covariance structure contributes

approximately 5% of the total variation in DO and corresponds

to processes acting seasonally. These processes are very

localized geographically as they act over distances of about

2.2 km, which may again include localized spikes in BOD and

subsequent DO depletion, as well as the natural variability in

river morphology and processes acting on DO over distances

ranging from 1 to 3 km. The final covariance structure consists

of a long range exponential component in both space and

time. The long spatial range of 88.9 km can be attributed to

characteristics and impacts from non-point source pollution

from suburban development and agricultural runoff that can

affect long stretches of rivers at once. What is interesting to

note is that these fluctuations have a temporal range of about

10,000 days or 27.4 calendar years, which captures time scales

corresponding to long term effects of human activities and

impact on the environment, as well as climatic changes that

may alter the air/water interface and oxygen equilibrium. It

should be recognized that there is a wider confidence interval

for this temporal range than for any of the other spatial or

temporal ranges of our covariance model because this

temporal range of 27.4 years exceeds the duration of the time

period for which data are available (15 years).

Table 3 – Space/time covariance parameters for DO using
a river metric.

Covariance
structure

Sill c
(mg/L)2

Spatial range
ar (km)

Temporal range
at (days)

1 0.4385 n/a n/a

2 0.8770 5.0 25

3 0.0877 2.2 365

4 0.3508 88.9 10,000
Nonetheless it is interesting to note that it is a very large

temporal range, which suggests that non-point source pollu-

tion over large geographical areas may have an impact on DO

that is lasting much longer than the impact of point source

pollutions. This may have the serious policy implication that,

while pollution prevention strategies may have quick

responses in abating the effect of point sources pollution,

these strategies may face a much greater challenge in abating

rapidly the effect of non-point source pollution on the DO in

the surface waters of New Jersey.

3.2. Euclidean vs. river metric

A cross-validation was performed to examine the differ-

ences in estimation of DO using a Euclidean vs. a river

distance. Table 4 summarizes the cross-validation MSE

obtained for each river basin using both distances. The use

of a river metric resulted in an 11.3% (Raritan) and 10.3%

(Lower Delaware) decrease in MSE. We note that the cross-

validation points were at a distance from their neighboring

training data points corresponding to several times the

average spatial and temporal ranges. In this situation there

isn’t as much contrast between the Euclidean and river

metrics as would be the case if the points were closer across

space. Hence, it is possible that the true gain in mapping

accuracy is higher than the 10–11% found. This is supported

by other cross-validation analysis we conducted using

synthetic data sets (results not shown here). The approxi-

mately 10% reduction in estimation error is appreciable

because previous studies using river distance in an esti-

mation context found little difference between a Euclidean

and river based model and in some cases found a river

distance to increase the prediction error (Ver Hoef et al.,

2006; Cressie et al., 2006; Peterson et al., 2006, 2007).

The improvement in mapping accuracy is supported by our

covariance analysis. The variance weighted average of the

Euclidean and river spatial ranges was 9.7 km and 20.4 km,

respectively. This means that DO levels are correlated over

much longer distances along the river network than across

land. This is due in part to the fact that a river meanders, such

that the distance between two points is longer if following the

curvature of the river as opposed to ‘as the crow flies’. The

ratio of river distance to straight-line distance between two

reach endpoints is known as the meandering ratio (MR).

However, even when we account for the meandering of the

network, the range of correlation between points along a river

network is significantly higher than when using a Euclidean

metric. For example, the average (MR) for both the Lower

Table 4 – Change in cross-validation Mean Square Error
(MSE) for each basin. A negative change indicates
a reduction in overall MSE (i.e. improvement) when using
a river metric.

Basin Euclidean MSE River MSE % Change
in MSE

Raritan 1.7381 1.5416 �11.3%

Lower Delaware 1.3193 1.1836 �10.3%
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Delaware and Raritan Basins is approximately 1.2. Factoring

out this effect by dividing the ratio of river range to Euclidean

range (2.1) by the average MR (1.2) gives us an adjusted ratio of

river vs. Euclidean range of 1.8. This means that, in practice,

even after adjusting for meandering, the correlation along the

river is still 1.8 times longer than across land.

While use of the river metric produces maps of DO that are

more accurate than those obtained using a Euclidean metric,

one might ask whether these maps are visually different. The

visual difference can best be shown by comparing the DO

estimated in two areas of the Raritan Basin, as shown in Fig. 4.

The maps obtained using a Euclidean metric are shown on the

left, while the maps obtained using the river metric are shown

on the right. The figure contains the zoomed in portion of the

northwestern Raritan Basin corresponding to the North and

South Branch WMA to highlight two major differences when

comparing metrics. Fig. 4(a) depicts the zonal differences

while Fig. 4(b) depicts the parallel reach effect.

From Fig. 4(a) the differences in zonal influence that

points have when using a Euclidean vs. a river metric are

apparent. This is directly connected to the differences in

covariance ranges. The river covariance has a longer vari-

ance weighted spatial range, resulting in a larger zone of

influence of data points along the river. For the Euclidean

metric this zone is circular in nature with a smaller range
than the zone of influence observed with the river metric, as

can be seen by comparing the right and left maps of Fig. 4(a).

Fig. 4(b) depicts another phenomenon along parallel rea-

ches. When estimating the DO level at a point along an

unmonitored reach, a higher relative weight is assigned to

a sample collected at a point that is at a short distance along

the river network, than at a point that is at a short distance

across land. So when considering the case shown in Fig. 4(b)

where two clearly different river branches are running in

parallel to one another, we see that the Euclidean map on

the left tends to propagate information from the monitoring

data points across land, while the river map on the right

constrains the propagation of that information to the river

branch where the sample was collected, leading to a more

realistic map where parallel branches have distinct water

quality.

Given the monitoring data available in this study, the

results support our hypothesis that the river metric provides

more accurate and realistic maps of DO across a river network

than maps obtained using a Euclidean metric. Based on this

conclusion, river distance was incorporated into the estima-

tion of DO in the Raritan and Lower Delaware River Basins for

a subset of the study period (2000–2005) to improve our

assessment of the fraction of river miles not attaining the

FW-TP standard for DO in New Jersey.
Fig. 4 – Zonal (a) and parallel reach effect (b) on the BME estimation of DO residual in the Upper & Lower Branch Raritan Basin

on Dec 16, 2002 using a Euclidean metric (left) or a river metric (right). Squares are locations of monitoring stations for this

time period and the solid lines indicate the WMA boundary.
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3.3. BME estimation of DO

Using the river metric the BME posterior PDF was calculated

describing DO at estimation points distributed uniformly

along all river miles in the Raritan and Lower Delaware Basins.

Fig. 5 depicts the BME mean estimate of DO on June 12, 2002.

This date is representative of a typical summer month where

DO is at its lowest in both basins. The darker areas highlight

river miles where DO has fallen below the New Jersey FW-TP

standard of 7 mg/L. The inset highlights an area in the

southeast quadrant of the Raritan Basin, corresponding to the

Millstone WMA where a majority of river miles are impaired

for DO during this time period. Additional movies provided in

the supplementary data for this paper show DO for every 30

days of the 2000 through August 2005 time period, for both the

Lower Delaware and Raritan Basins. These maps are used to

calculate the fraction of river miles impaired.

3.4. Impaired river miles in the Raritan and
Lower Delaware

For illustration purpose we use the New Jersey FW-TP stan-

dard of 7 mg/L for waters designated for freshwater trout-

production because the Lower Delaware and Raritan Basins

contain a significant number of trout producing and trout

maintaining streams. The data were examined to see if

a temporal or seasonal trend existed as the temporal covari-

ance would suggest.

The average fraction of river miles not meeting the

assessment criteria for more likely than not (MLTN) in non-

attainment (i.e. probability of violation > 50%, Akita et al.,

2007) increases from 0.00% to 6.61% between winter and

spring of 2002 in the Raritan Basin, and from 0% to 19.70% of

river miles in the Lower Delaware Basin (Table 5). In the

summer of 2002, this fraction of impaired river miles increases

even further, to about 23% in the Raritan and about 58% in the

Lower Delaware. Much of this phenomenon can be related to

Fig. 5 – BME Estimation of DO (mg/L) using a river metric in

the Raritan Basin on June 12, 2002. Darker areas

correspond to regions where the DO estimate is lower than

the standard of 7 mg/L. An impaired area within the

Millstone WMA is shown in the inset.
temperature changes depending on season. In the warmer

months, water temperature is at its highest and therefore

does not hold as much oxygen as the colder water in the

winter months. Because New Jersey, and particularly the

Raritan sit at higher latitudes, the water temperature drops

drastically in winter, leading to near 0% of river miles being

impaired. Alternatively, the warmer waters of the summer

and spring can foster biological growth that consumes large

amounts of DO. This increase in BOD enhances the effects of

higher temperatures and leads to more river miles in

non-attainment.

From 2000 to 2005, between about 8% and 58% of river miles

were found to be MLTN in non-attainment in the warmer

summer months (Table 6). The fraction of impaired river miles

was highest in 2002, that fraction decreased in 2003 and 2004,

but it increased again in the last year of our study period, 2005,

indicating that low DO may be an on-going problem in these

basins. 2005 was also the warmest summer on record in New

Jersey and coupled with a drought, could have contributed to

the increase in impaired river miles. An analysis was also

conducted to determine the fraction of river miles highly

likely in non-attainment (i.e. probability of violation > 90%,

Akita et al., 2007). Based on this criterion, we found that the

Lower Delaware had a much higher fraction of river miles

ascertained as impaired than can be found in the Raritan. Over

the study period, the Lower Delaware had as much as 19% of

river miles highly likely in non-attainment, while the Raritan

remained around 1.8%. DO is affected by a number of envi-

ronmental factors, including temperature, salinity, nutrient

levels and biological oxygen demand. One reason for

explaining the larger percentage of impaired miles in the

Table 5 – Seasonal average variation in fraction (%) of river
miles more likely than not (MLTN) in non-attainment
(probability of Violation > 50%) for 2002.

Season Fraction of Raritan
impaired

(% river miles)

Fraction of Lower
Delaware impaired

(% river miles)

Winter (Jan–Mar) 0.00 0.00

Spring (Apr-Jun) 6.61 19.70

Summer (Jul–Sep) 23.47 57.92

Fall (Oct–Dec) 0.00 0.04

Table 6 – Average summer fraction (%) of river miles more
likely than not (MLTN) in non-attainment (probability of
Violation > 50%) for the period 2000–2005
(summer [ Jul–Sep).

Date Fraction of Raritan
MLTN impaired
(% river miles)

Fraction of Lower
Delaware MLTN

impaired
(% river miles)

Summer 2000 6.86 10.03

Summer 2001 14.21 57.00

Summer 2002 23.47 57.92

Summer 2003 12.68 13.77

Summer 2004 12.44 34.01

Summer 2005 19.40 43.87
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Lower Delaware is the fact that not only is the percentage of

urban area larger, but the overall amount of agricultural land

is also larger than that in the Raritan, possibly contributing

non-point source nutrient loading into adjacent streams. Land

cover and land use have shown to greatly impact the quality of

streams and rivers, especially in areas undergoing rapid

conversion to more urban development patterns (King et al.,

2005; Chang, 2008).

One of the limitations of this approach is the exclusion of

other parameters that can be used to predict DO levels. DO is

affected by the geochemistry of the water, and therefore

process-based models may provide additional information to

refine our geostatistical models. Additionally, this approach

looks at only one class of potential covariance functions, the

exponential-power model, other functions need to be tested

for permissibility when using river distance (isotropic or flow-

weighted). Finally, we use a partial cross-validation procedure

to examine the predictive capability of our model. Full model

validation using measured DO will be useful for further model

refinement in future work.

These results suggest that continued DO monitoring is

particularly critical in the Lower Delaware basin to evaluate

future trends in DO during the summer months. More work is

needed to identify the specific causes of low DO. The DO maps

generated here provide a general basis to help to identify these

causes.

4. Conclusions

Several conclusions can be drawn from the results of this

study:

� Our implementation of a river distance metric in the

BMElib package provides an efficient and flexible tool for

the space/time analysis of water quality along river

networks.

� Application of the river metric to analyze DO in two river

basins in New Jersey leads to maps that are 10–11% more

accurate and visually more realistic than maps obtained

using the classical Euclidean distance.

� After adjusting for river meandering, the correlation of DO

along the river is about 1.8 times longer than across land.

� DO non-attainment was worse in the Lower Delaware, over

more river miles, and over a longer period of time than in

the Raritan.

� Additional parameters, such as BOD, temperature, salinity,

and nutrients should be factored in to improve estimation

accuracy at unmonitored locations.

� Future work should examine other water quality parame-

ters in a space/time context as they may behave differently

than DO.
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